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Linear SISO Systems with Extremely
Sensitive Zero Structure

Jordan Berg and Harry G. Kwatny

Abstract—If a system with regular system pencil and relative degree
greater than one is perturbed, the relative degree will typically decrease,
and new finite zeros will appear. These new zeros are singularly per-
turbed. This paper applies a new canonical parameterization to systems
with singular system pencils. Such systems have undefined relative degree.
In singular systems, new zeros also appear under small perturbation, but
they are not necessarily singularly perturbed. Rather, these zeros may
appear at any frequency.

I. INTRODUCTION
It is well known that relative degree is a structurally unstable
property. Consider the system

_es+1
=0

G(s)

ey

If ¢ = 0, the transfer function has relative degree two, but if £ # 0
it has relative degree one. The zero that appears as a result of the
perturbation ¢ is at —1/¢. For ¢ arbitrarily small, the magnitude of
the zero can be made arbitrarily large. That is, the zero structure is
singularly perturbed. If £ is negative, the zero is in the right half-plane.

The question of what structures may arise to replace an unsta-
ble property under small perturbation is the subject of singularity
theory. This paper applies tools from singularity theory to study
the zero structure transitions, under small perturbation, of linear,
time-invariant, single-input—single-output (SISO) control systems.
Consider such a system

Az + bu
Yy =cx+du

&

Il

(2a)
(2b)

where A € C™", b e O™, c € O™,z € C", and u,y,d € R.
Denote this system by

A b
L d}' 2¢)
Given (2), define a matrix pencil called the system matrix
sl—A b
re= "1 ) ®

A pencil is singular if it is nonsquare or has identically zero
determinant and is regular otherwise [1]. Regular SISO systems are
very familiar. Singular SISO systems are not. The transfer function
of a singular SISO system is identically zero, so it is unlikely that any
such control system would be singular by design. However, singular
systems can and do arise as subsystems of parameter-dependent
families of multi-input-multi-output (MIMO) systems [2], [3]. This
paper first considers regular systems and recovers well-known results
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for that case. It then treats—for the first time—singular systems, using
the same method.

Two pencils M(s) and N(s) are strictly equivalent, written
M(s) ~ N(s), if there exist invertible, constant matrices P
and @' such that PM(s)Q~! = N(s). The invariants of the
system matrix of (2) under strict equivalence are the invariant zero
structure [4]. For the purposes of this paper, the invariant zero
structure will be considered synonymous with the zero structure.
The zero structure is displayed by the classical Kronecker form [1].
In the context of control systems, however, a better choice is the
equivalent Thorp—Morse form [5], [6]. Unlike the Kronecker form,
the Thorp—Morse form retains the system structure of (3), so if the
pencil (3) is in Thorp-Morse form, it is meaningful to also refer to
the system (2c) as being in Thorp—Morse form.

Relative degree is an important aspect of the zero structure,
and it is closely related to one set of Kronecker invariants—the
infinite divisors. So it is not surprising, considering example (1), that
the Kronecker form (and so the Thorp-Morse form) is structurally
unstable in the sense that can be made rigorous [7], [8]. This
structural instability presents a challenge to numerical analysts trying
to calculate the Kronecker form of a pencil. Van Dooren [9] solves
that problem essentially by deciding whether the pencil is sufficiently
close to another pencil with unstable structure. If it is, it is given the
Kronecker form of that pencil. Here, rather than moving a pencil from
a less degenerate structure to a more degenerate structure, the question
is what less degenerate structures may be found in the neighborhood
of a highly degenerate structure. This paper and other works by the
authors apply this point of view purely for analysis. However, other
researchers are taking a similar approach to numerical computation.
For details of this work see [12]-{14].

The Jordan form for square matrices is, like the Kronecker form,
structurally unstable under similarity transformation. Arnold [15] has
presented a structurally stable canonical form based on the Jordan
form of a square matrix. Structural stability is achieved by inserting
free parameters into the Jordan form. These parameters can locally
represent any perturbation of the original matrix. Of course this in
itself is not too remarkable, since simply adding a free parameter to
every element would suffice, but Arnold derives the minimal such
parameterization. Furthermore, each parameter appears only once.
Motivated by this work, Berg and Kwatny have derived a similar
canonical parameterization of the Kronecker and Thorp-Morse forms
[10], [11], [16]. The property of this parameterized canonical form
that makes it useful here is that it is a versal unfolding; that is, every
invariant zero structure in a neighborhood of the nominal system can
be reached for some value of the parameter vector [15]. Therefore,
to study all possible behaviors of the invariant zeros under small
perturbation, it is only necessary to study the canonical parameteri-
zation. Furthermore, the parameterization contains the fewest possible
parameters, so the computational effort is significantly reduced.

Section II of this paper derives the familiar properties of nonsin-
gular SISO systems, using a novel method. Section III applies this
method to singular SISO systems and presents an interesting example.

II. SISO SYSTEMS WITH WELL-DEFINED RELATIVE DEGREE

In this section, the canonical parameterization is used to prove
the well-known result that the new zeros of a generically perturbed
linear SISO system must be singularly perturbed. For example, see
[17] for a singular perturbation analysis of affine nonlinear systems
with well-defined relative degree that includes the systems considered
below.

For linear SISO systems, well-defined relative degree is equivalent
to a well-defined transfer function. Consider a nonsingular SISO
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system with m > n distinct zeros
8™ 4 Brn—18™ 4 Pis + o
st apo1st T 4 tarstap

The system pencil of any minimal realization of (4), in the
Thorp—Morse canonical form [5], is

G(s) =2

®

- 0 -
0
Hipm) 0 .
1
# 0 (5)
0 0
0 Zm
(1 -+ 0 0 0 01
where z1,-+-,zn are the roots of the numerator polynomial, cor-

responding to the finite zeros of (4), H has ones on the first
superdiagonal and zeros elsewhere, and the order of H corresponds to
the relative degree of (4). The canonical unfolding of (5) has n + 1
parameters

_ 0 -
0
H(n_m> 0 :
1
Z1 + Anfm 0
0 ) 0
0 Zm + An
L1 /\1 /\n,m,1 0 /\n+l A
(6)
If Ans1 # 0, then the relative degree is zero. Otherwise
cb = An—?’n~~1
cAb = Ap_m—2
AT = )\
A"y = 1.

So the relative degree is determined by the first nonzero parameter
between An—m,m—1 and A;. Generically, with only a causality con-
straint, none of the parameters is zero, so the generic relative degree
is zero. With the additional constraint A,+; = 0, the generic relative
degree is one. Thus, for any system of relative degree greater than
one, typical perturbations will cause one or more zeros to appear in
the transfer function.

What are the zeros resulting from the perturbation? Take (6) and
consider the easier case, An+1 # (. The perturbed system is strictly
equivalent to

- 0 1 -
0
0 0
0] 1
_ 1 Ay _ Anemo1
Nnt1 Ani1 Ant1 , @)
Zy
0 0
Zm
L 0 0 1]

where z;, = zx + Ax. The perturbed relative degree is zero with m of
the finite zeros being the original finite zeros, perturbed by a small
amount (that is, regularly perturbed). The new zeros are the n — m
roots of the equation

A1 ™ F A1 8™ T T s+ 1 =0, (B)
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By Rouché’s theorem [18], given a circle of radius R centered on
the origin of the complex plane, (8) has the same number of zeros
inside the circle as does the polynomial one (that is, none at all) if
[Aag18™ "+ Apem—18" "™ 4o+ A1s| < 1 for every s on the
circle. So, for any R greater than one, by restricting each parameter
to have magnitude less than R~("~™/(=m™) 4] the corresponding
zeros must have magnitude greater than R. So the new zeros are
singularly perturbed. Although the new zeros are large, they may be
nonminimum phase, as shown by the simple example (1).

Now consider the case A,+1 = 0. Without loss of generality, let
Ait1 t0 An—m—1 be zero. The perturbed system is strictly equivalent
to the following one:
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of systems, particularly as a subsystem of a larger MIMO system

[2], [3]. In this section, the canonical unfolding is applied to obtain
a new result for singular systems.

The following system shows the general form of a singular SISO
system [5]:

Ag O 0 0

0 A.. 0 b

0 0 A, O

0 0 e, 0

where Ag is a square m X m matrix whose eigenstructure is the finite
zero structure of the system, A.. is a square € X € matrix with ones
on the superdiagonal and zeros elsewhere, A,, is a square 17 X 7

1)

01 0 07 matrix with ones on the superdiagonal and zeros elsewhere, b. is a
' 0 0 0 £ x 1 vector with a one in the bottom element and zeros elsewhere,
1 : and ¢, 1s a 1 X 7 vector with a one in the first element and zeros
0 0 1 elsewhere. The dimensions satisfy m + ¢ 4+ = n.
0 1 Consider the case ¢ > 0 and n > 0. The unfolding then has
general structure as shown in (12) at the bottom of the page {11]. In
0 0 0 0 particular, if £ is zero, then (12) becomes
0 1 A
Ag 0 0
il
% ~x -5 A A A, 01 At
A1 0 0 - 0 ) Ant2
0 0 0 . . : . (13)
, . . . . o1
Zm 0 o - 0 0 /\n+n
10 -0 0 0 0-(9) 0 1.0 0 Antn+t1
The perturbed relative degree is n — m — 4, with m of the finite If = 0 and ¢ > 0, the perturbed form is [11]
zeros again being the regularly perturbed original finite zeros. The - A1 -
new zeros are the ¢ roots of the equation . Az
‘ Ag 0 . 0
Xis" +Aic1s' 4o As+1=0. (10) N
Once again, an appeal to Rouché’s theorem reveals that the new zeros 0 .1 0 (14)
are singularly perturbed. Note finally that if finite zeros are repeated, :
. . . 0 '
the perturbation structure may be complicated [15], but the analysis 1 0
above is not altered. 0 1
L 0 An-{—[ >\n+2 )\n+e An+5+1 B
III. SISO SYSTEMS WITH UNDEFINED RELATIVE DEGREE If both £ and 7 are zero, the perturbed form is [11]
Not all SISO systems have well-defined relative degree. The 21 4+ A 0 Ani1
“pathological” cases occur when the system matrix is singular [1]. .
Let a system be called singular if its system matrix is singular. : (15)
Then a SISO system is singular if and only if its transfer function is 0 Znt A Aoa
identically zero. This situation may arise in a parameterized family A2nt1 Asn Aznt
- A1 q
. A2
Ag 0 . 0 0
: n
An
0 1 0
0 - 0 :
R 0 ‘
0 1
>\n+1 )\n+2 /\2n >\2n+1 A2n+2 v /\2n+s 0 1 )\2n+5+1
0 0 e 0 0 0 0 A2ntet2
: ' ' : ] : n
0 0 0 0 0 0 0 Azniein
L 0 0 1 0 0 /\2n+g+n+1 i } 1
~ —— (12)

€ 7 1
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For each of these three cases, either d # 0 under typical perturba-
tion, or if d is constrained to be zero, then ¢b # 0. So, as in the case
of nonsingular systems, under typical perturbation singular systems
are nonsingular and have relative degree zero or one.

Although the relative degree of the perturbed singular case behaves
just as the nonsingular case does, the location of the resulting new
zeros may be very different. Consider the following simple singular
SISO system:

0 01
0 0 0]. 16)
0 1 0

For this pencil, € = 1, = 1. The single input controls an unob-
servable subsystem, and the single output observes an uncontrollable
subsystem. The transfer function is identically zero. The system has
no isolated invariant zeros. Following (12), the canonical unfolding is

0o 0 1
A0 A a7
0 1 Xs

Set A3 = 0, corresponding to a strictly proper system, and consider
the generic case A2 # (). Then the Thorp-Morse form of the perturbed
system 1is

0 0 1
0 —% 0 (18)
1 0 0

By comparison to (5), H = 0, so the perturbed system has (as
expected) relative degree one. Again comparing to (5), or referring
to [4] or [5], it has a single finite zero at — A1 /2. Constrain Ay /A3 to
be real to ensure realizability. Then the perturbed system has a finite
zero at —A(/A2. Now let Ay = —oAg, where ¢ is any real number.
Then for arbitrarily small perturbations, the perturbed system has a
zero at o, where ¢ is completely arbitrary. This is quite remarkable
considering that the zeros created by perturbing the regular system
had magnitude that approached infinity when the magnitude of the
perturbation went to zero. Note that the analysis of affine systems in
[17] explicitly omits systems without a well-defined relative degree
such as (16).

The “flip side” of this example is also remarkable. That is, this
singularity is structurally stable in two parameter families. Thus
if a system “near” this singular system contains two independent
variables, it is possible, even likely, that the resulting parameterized
family will contain a system exhibiting this singularity.

IV. CONCLUSION

The zero structure of nonsingular SISO systems behaves in a
well-understood way under perturbation. In such cases the relative
degree is well defined. The relative degree is generically zero
for proper systems and one for strictly proper systems. When a
nongeneric system is slightly perturbed, one or more new zeros
appear. These zeros are singularly perturbed. Singular SISO systems
have identically zero transfer functions. They have undefined (or
infinite) relative degree. These systems are structurally unstable
and upon perturbation will become nonsingular. In this case, also,
new zeros appear. These new zeros, however, are not necessarily
singularly perturbed and may be at any frequency.
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